
Lecture 10 - Moment of Inertia
A Puzzle...

Question

For any object, there are typically many ways to calculate the moment of inertia I = ∫ r2 ⅆm, usually by doing the 

integration by considering different layers or different coordinates. What are some ways to compute this integral 

for a solid sphere?

Solution

Denote the mass density ρ = M
4

3
π R3

. We will use Mathematica to perform the integrations.

1. The simplest and most intuitive way is to perform the integration using spherical coordinates. The distance from 

the z-axis equals r Sin[θ] and the volume element is r2 Sin[θ] ⅆ r ⅆθ ⅆϕ, 

I = ∫0
2 π
∫0
π
∫0

R
(r Sin[θ])2 ρ r2 Sin[θ] ⅆr ⅆθ ⅆϕ (1)

Integrater*Sin[θ]
2
ρ r2 Sin[θ], {r, 0, R}, {θ, 0, π}, {ϕ, 0, 2 π} /. ρ →

M

4

3
π R3

2 M R2

5

2. This integral is more complex in Cartesian coordinates, but still straightforward. The distance from the z-axis is 

x2 + y2
1/2 and the volume element is ⅆx ⅆy ⅆ z,

I = ∫-R

R
∫-R2-z2

1/2
R2-z2

1/2

∫-R2-y2-z2
1/2

R2-y2-z2
1/2

(x2 + y2) ρ ⅆx ⅆy ⅆz (2)

Integratex2 + y2 ρ, {z, -R, R}, y, - R2 - z2 , R2 - z2 , x, - R2 - y2 - z2 , R2 - y2 - z2  /. ρ →
M

4

3
π R3

2 M R2

5

3. We could integrate up along concentric hollow spheres. The moment of inertia of a hollow sphere of mass M 

and radius R through any axis passing through its origin equals 2
3

M R2 (as an exercise, prove this to yourself). 

Therefore, the mass of the hollow sphere of radius r and thickness ⅆ r equals ρ 4 π r2 ⅆ r. Thus, the moment of 

inertia of a solid sphere equals

I = ∫0
R 2

3
(ρ 4 π r2) r2 ⅆr (3)

Integrate
2

3
*ρ 4 π r2*r2, {r, 0, R} /. ρ →

M

4

3
π R3

2 M R2

5

4. Getting a bit fancier, we can break up the integration along disks centered on the z-axis. As we will find out in 

today’s lecture, the moment of inertia of a disk (or cylinder) with mass M and radius R equals 1
2

M R2. Defining 
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r[z] and m[z] to be the radius and mass of the thin disk centered at (0, 0, z) with width ⅆ z, 

I = ∫
1
2

m[z] r[z]2 ⅆz (4)

where r[z] = R2 - z2
1/2 and m[z] ⅆ z = ρ π r[z]2 ⅆ z.

In[2]:= Integrate
1

2
ρ π R2 - z2 R2 - z2, {z, -R, R} /. ρ →

M

4

3
π R3

Out[2]=
2 M R2

5

5. You could go on imagining other crazy ways to do this integration. For example, you could integrate along 

disks centered on the x-axis (this is actually trivial once we learn about the Parallel Axis Theorem and the Perpen-

dicular Axis Theorem in today’s lecture). I encourage you to try this route yourself!

Moment of Inertia

In the last lecture, we analyzed the angular momentum of extended objects and saw that a new quantity, the 

moment of inertia, appeared in the resulting equations. In this lecture, we will understand what the moment of 

inertia is by calculating it for various objects. That will prepare us to discuss rotational dynamics in the coming 

weeks.

Recall that the moment of inertia is calculated about an axis, so in each problem we specify around what axis we 

are rotating our object of interest. This is very different from torque and angular momentum, which are calculated 

about a point.

Supplemental Section: Finding the Center of Mass

Supplemental Section: Moment of Inertia in 1D

Example

Calculate the moment of inertia of a thin rod of mass M and length L about an axis perpendicular to the center of 

the rod.

Solution

Defining the mass density ρ = M

L
, 

I = ∫ r2 ⅆm = ∫-L/2
L/2

x2 ρ ⅆx =
1
3


L

2

3
- -

L

2

3
 ρ =

1
3


1
4

L3 ρ =
1
12

M L2 (10)

This useful result is definitely worth knowing, as it will often appear when computing moments of inertia of 

various objects (especially in limiting cases)! □ 

Supplemental Section: Parallel Axis Theorem

Consider an object whose center of mass rotates around the origin at the same rate as the body rotates around the 

center of mass. This may be achieved, for example, by gluing a stick across the pancake and pivoting one end of 

the stick at the origin
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In this special case, all points in the object travel in circles around the origin. Let their angular velocity be ω. 

Breaking up the angular momentum into the translational portion (as if the entire object’s mass was concentrated 

at its center of mass) and a rotational portion (from the object spinning about its center of mass with angular 

velocity ω),

Lz = (M R2 + ICM)ω (11)

In other words, the moment of inertia about the origin equals

I = M R2 + ICM (12)

Note that this relation is only true with the distance R measured relative to the center of mass (it does not work for 

two general points).

Example

Consider a thin rod of mass M and length L. Given that the moment of inertia through an axis passing through its 

center and perpendicular to the rod equals ICM =
1
12

M L2, what is the moment of inertia Iend through an axis 

passing through an axis passing through the end of the rod and perpendicular to the rod?

Solution

Using the parallel axis theorem, 

Iend = M 
L

2

2
+ ICM =

1
4

M L2 +
1
12

M L2 =
1
3

M L2 (13)

Remember that this works only with the center of mass. If we instead want to compare Iend with the I around a 

point L

6
 from that end, then we cannot say that they differ by M 

L

6

2
. But we can compare each of them to ICM and 

say that they differ by M 
L

2

2
- M 

L

3

2
=

5
36

M L2. □ 

Example

In the last lecture we considered a mass m coming in and sticking to the end of a thin rod of mass m and length l. 

This final object will rotate about its center of mass. What is its ICM?
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Solution

Note that the center of mass of the final object is l

4
 away from its center. ICM will have a contribution from the thin 

rod and from the mass m. The former can be calculated using the parallel axis theorem

ICM
rod =

1
12

m l2 +m 
l

4

2
=

7
48

m l2 (14)

ICM
mass = m 

l

4

2
=

1
16

m l2 (15)

Now ICM can be calculated by adding these two contributions

ICM = ICM
rod + ICM

mass =
5
24

m l2 (16)

which we could have substituted into this previous problem. □ 

Supplemental Section: Perpendicular Axis Theorem

This theorem is valid only for pancake objects. Consider a pancake object in the x-y plane. 

If the object were spinning with an angular velocity ω about the z-axis, we know that its moment of inertia about 

the z-axis equals

Iz = ∫ r2 ⅆm = ∫ (x
2 + y2) ⅆm (17)

Imagine that this object was spinning about the x-axis with angular velocity ω. Then we define the moment of 

inertia Ix about the x-axis as Ix =
Lx

ω
 which would have the form 

Ix = ∫ (y
2 + z2) ⅆm (18)

Similarly, we define the moment of inertia Iy about the y-axis by imagining this object spinning about the y-axis 

with angular velocity ω, 

Iy = ∫ (z
2 + x2) ⅆm (19)

For a pancake object, z = 0 everywhere along the object, and therefore we find 

Iz = Ix + Iy (20)

Although this does not apply frequently, when it does it can help save some computation.
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Supplemental Section: Calculating Moments of Inertia

Calculating the moment of inertia for an object is an extremely useful skill, since it not only uses your math 

knowledge but also provides excellent preparation for the types of integrals you will do in Electrodynamics!

Example

Calculate the moment of inertia of a ring of mass M and radius R about the axis going through the ring’s center 

perpendicular to the plane of the ring.

Solution

Orient the ring in the x-y plane so that we calculate the moment of inertia about the z-axis. Using the mass density 

ρ =
M

2 π R
, the moment of inertia Iz about this axis equals

Iz = ∫ r2 ⅆm = ∫0
2 π

R2 ρ R ⅆθ = (2 π R ρ) R2 = M R2 (21)

as expected, since the entire mass M of the object is at a distance R from the axis. □ 

Example

Calculate the moment of inertia of a ring of mass M and radius R about the axis going through the ring’s center 

parallel to the plane of the ring.

Solution

Orient the ring in the x-y plane so that we calculate the moment of inertia about the x-axis.

Ix = ∫ r2 ⅆm = ∫0
2 π
(R Sin[θ])2 ρ R ⅆθ =

1
2
(2 π R ρ) R2 =

1
2

M R2 (22)

Alternatively, we could have used the Perpendicular Axis Theorem, since the ring is spherically symmetric. 

Having found that Iz = M R2 in the last example and using the symmetry of the problem to determine Ix = Iy, the 

Perpendicular Axis Theorem states that Ix + Iy = Iz and therefore Ix =
1
2

Iz =
1
2

M R2. □ 

Example

Calculate the moment of inertia of a rectangle of mass M with side lengths a and b about an axis going through its 

center perpendicular to the plane.

Solution

Defining the mass density ρ = M

a b
,

I = ∫ r2 ⅆm = ∫-a/2
a/2

∫-b/2
b/2

(x2 + y2) ρ ⅆx ⅆy =
1
12

a b (a2 + b2) ρ =
1
12

M (a2 + b2) (23)

Alternatively, we could have used the Perpendicular Axis Theorem, since (using the result of the thin rod) 
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Alternatively,  Perpendicular  (using  rod)

Ix =
1
12

M b2 and Iy =
1
12

M a2 so that Iz = Ix + Iy =
1
12

M a2 + b2. □ 

Example

Calculate the moment of inertia of a disk of mass M and radius R about the axis going through the ring’s center 

perpendicular to the plane of the disk.

Solution

Using polar coordinates and defining the mass density ρ = M

π R2 ,

I = ∫ r2 ⅆm = ∫0
2 π
∫0

R
r2 ρ r ⅆr ⅆθ =

π

2
ρ R4 =

1
2

M R2 (24)

The 1
2

 factor is very interesting, and it tells you a neat property about circles and how their areas are distributed 

relative to the origin! □ 

Example

Calculate the moment of inertia of a disk of mass M and radius R about the axis going through the ring’s center 

parallel to the plane of the disk.

Solution

Using polar coordinates and defining the mass density ρ = M

π R2 ,

I = ∫ r2 ⅆm = ∫0
2 π
∫0

R
r2 Sin[θ]2 ρ r ⅆr ⅆθ =

π

4
ρ R4 =

1
4

M R2 (25)

By symmetry, this also agrees with the Perpendicular Axis Theorem. □ 

Example

Calculate the moment of inertia of a regular N-gon of mass M and "radius" R through the axis going through its 

center and perpendicular to the plane.

Solution

The N-gon equals N isosceles triangles put together. Therefore its moment of inertia will equal the moment of 

inertia of one of these isosceles triangles multiplied by N. Orient one such isosceles triangle so that its edges lies 

on θ = π

2
-

π

N
, θ = π

2
+

π

N
, and y = R Cos π

N
 (for example, for N = 6 this is the triangle whose right edge is dashed 

in the figure above. For a general N, this may require you to rotate the figure). Substituting y = r Sin[θ] into this 

last relation, we can compute the moment of inertia of this triangle as 
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I = ∫ r2 ⅆm

= N ∫ π

2
-

π

N

π

2
+

π

N
∫0

R
Cos

π

N


Sin[θ] r2 ρ r ⅆr ⅆθ

= N ρ ∫π

2
-

π

N

π

2
+

π

N 1
4
R

Cos π
N


Sin[θ]


4

ⅆθ

=
1
24

N R4 ρ 4 Sin 2 π

N
+ Sin 4 π

N


where we have used Mathematica to compute and simplify this last integral. We now need to compute ρ by 

dividing M by the area of the N-gon. The area of the isosceles triangle we have been analyzing equals 

R Sin π
N
 R Cos π

N
 so the area of the N-gon equals 1

2
N R2 Sin 2 π

N
 so that ρ = 2 M

N R2 Sin
2 π

N

. Substituting this in,

I =
1
24

N R4 ρ 4 Sin 2 π

N
+ Sin 4 π

N


=
1
6

M R2 2+Cos 2 π

N


(27)

Here are some values in the form N, I

M R2 : 3, 1
4
, 4, 1

3
, 5, 1

12
, ∞, 1

2
. Note that these particular values form an 

arithmetic progression. □ 

Calculating Moments of Inertia - Pro Version

For some objects with certain symmetries, it is possible to calculate the moment of inertia I without doing any 

integrals. All that is needed is a scaling argument and the Parallel Axis Theorem.

Let’s compare the moments of inertia Ismall of a thin rod of mass M and length L with the moment of inertia Ilarge 

for a stick of mass 2 M and length 2 L. Defining the mass per unit length ρ = M

L
, we have 

 Ismall = ∫-L/2
L/2

x2 ρ ⅆx (28)

Change variables to y = 2 x, we obtain

 Ismall = ∫-L

L


y

2

2
ρ

ⅆy

2
=

1
8 ∫-L

L
y2 ρ ⅆy (29)

But since this last integral is Ilarge = ∫-L

L
y2 ρ ⅆy, we see that Ilarge = 8 Ismall. 

Using this idea, we can cleverly find the moment of inertia Ismall using the Parallel Axis Theorem. The technique is 

most easily illustrated with pictures. If we denote the moment of inertia of an object by a picture of the object, 

with a dot signifying the axis, then we have

(30)

The first line comes from the scaling argument, the second line comes from the fact that moments of inertia simply 

add (the left-hand side is two copies of the right-hand side, attached at the pivot), and the third line comes from the 

parallel-axis theorem. Equating the right-hand sides of the first two equations gives

(31)

Plugging this expression for  into the third equation gives the desired result,
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(32)

This trick lets you easily calculate the moment of inertia of fractal objects!

Example

Take a stick of length l, and remove the middle third. Then remove the middle third from each of the remaining 

two pieces. Then remove the middle third from each of the remaining four pieces, and so on, forever. Let the final 

object have mass m. Calculate the moment of inertia about an axis through its center, perpendicular to stick. (Hint: 

Be careful about how the mass scales.)

Solution

Our object is self-similar to an object 3 times as big, so let’s increase the length by a factor of 3 and see what 

happens to I. In the integral ∫ x2 ⅆm, each x pick up a factor of 3, yielding a factor of 9 from x2. But what happens 

to the ⅆm? Tripling the size of our object increases its mass by a factor of 2, because the new object is simply 

made up of two of the smaller ones, plus some empty space in the middle. So the ⅆm picks up a factor of 2. 

Therefore, the I for an object of length 3 l is 18 times the I for an object of length l, assuming that the axes pass 

through any two corresponding points. With pictures, we have

(33)

Therefore, we can solve this to obtain

(34)

When we increase the length of our object by a factor of 3 here, the factor of 2 in the ⅆm is larger than the factor 

of 1 relevant to a zero-dimensional object, but smaller than the factor of 3 relevant to a one-dimensional object. So 

in some sense our object has a dimension between 0 and 1. It is reasonable to define the dimension, d, of an object 

as the number for which rd is the increase in “volume” when the dimensions are increased by a factor of r. In this 

problem, we have 3d = 2 so that d = Log3[2] ≈ 0.63 □ 
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